Diferencia entre revisiones de «Página principal»
Línea 90: | Línea 90: | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | {| class="wikitable" style="margin:left;width:100%" | |
− | + | !colspan="2"|Sequence 04 | |
− | + | |- | |
− | + | | <b>Rosbag</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence04.bag sequence04.bag] | |
− | + | |- | |
− | + | | <b>Raw data</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence04.tar.gz sequence04.tar.gz] | |
− | + | |- | |
+ | | <b>Calibration</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/calibration04.yaml calibration04.yaml] | ||
+ | |- | ||
+ | | <b>Ground-Truth</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence04_gt.txt sequence04_gt.txt] | ||
+ | |- | ||
+ | | <b>MD5 checksum (Rosbag)</b> || 887ad3b3173356c03ab02ae9ad27cc8d | ||
+ | |- | ||
+ | | <b>MD5 checksum (Raw Data)</b> || e9a9d6fbcad3fe77785454058fe6bb65 | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {| class="wikitable" style="margin:left;width:100%" | ||
+ | !colspan="2"|Sequence 05 | ||
+ | |- | ||
+ | | <b>Rosbag</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence05.bag.00 sequence05.bag.00] [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence05.bag.01 sequence05.bag.01] | ||
+ | |- | ||
+ | | <b>Raw data</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence05.tar.gz.00 sequence05.tar.gz.00] [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence05.tar.gz.01 sequence05.tar.gz.01] | ||
+ | |- | ||
+ | | <b>Calibration</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/calibration05.yaml calibration05.yaml] | ||
+ | |- | ||
+ | | <b>Ground-Truth</b> || [http://fs01.cifasis-conicet.gov.ar:90/~robot_desmalezador/robot/sequence05_gt.txt sequence05_gt.txt] | ||
+ | |- | ||
+ | | <b>MD5 checksum (Rosbag)</b> || a4e61b22c9ac0b818ceff9e23ea6d076 | ||
+ | |- | ||
+ | | <b>MD5 checksum (Raw Data)</b> || df7c6201762916d56520c17299eb03c0 | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {| class="wikitable" style="margin:left;width:100%" | ||
+ | !colspan="2"|Sequence 06 | ||
^ ^ Sequence 06 ^ | ^ ^ Sequence 06 ^ |
Revisión del 12:21 26 abr 2023
Sumario
The Rosario Dataset
This web page presents an agricultural dataset collected on-board out weed removing robot. The dataset is composed by six different sequences in a soybean field and it contains stereo images, IMU measurements, wheel odometry and GPS-RTK (position ground-truth).
If you use the Rosario Dataset in an academic work, please cite
Taihú Pire, Martín Mujica, Javier Civera and Ernesto Kofman. **The Rosario Dataset: Multisensor Data for Localization and Mapping in Agricultural Environments**. In: International Journal of Research Robotics, 2019. RosarioDataset2019.pdf
@article{pire2019rosario,\\ author = {Taih{\'u} Pire and Mart{\'i}n Mujica and Javier Civera and Ernesto Kofman},\\ title = {The Rosario dataset: Multisensor data for localization and mapping in agricultural environments},\\ journal = {The International Journal of Robotics Research},\\ volume = {38},\\ number = {6},\\ pages = {633-641},\\ year = {2019},\\ doi = {10.1177/0278364919841437}\\ }
Available Data
* **Stereo images** (ZED Stereo Camera: colour images 672x376 @ 15 fps) * **MEMS IMU** (LSM6DS0 6-DoF Inertial Measurement Unit working at 140 Hz) * **Wheel Odometry** ( 3 x Hall effect sensors coupled to each rear wheel and 1 encoder attached to the robot direction) * **GPS-RTK system** (GPS-RTK modules working at 5 Hz) * **Calibration** (Intrinsic and extrinsic parameters) * **Positional Ground-Truth** (3D position Ground-truth computed from GPS-RTK)
Downloads
The dataset can be downloaded by torrent [coming soon] or by direct download using the provided links below. For direct download the aria2c command line from aria2c software is recommended:
aria2c -s 8 -x 8 <URL>
Sequence 01 | |
---|---|
Rosbag | sequence01.bag.00 sequence01.bag.01 sequence01.bag.02 sequence01.bag.03 |
Raw data | sequence01.tar.gz.00 sequence01.tar.gz.01 sequence01.tar.gz.02 sequence01.tar.gz.03 |
Calibration | calibration01.yaml |
Ground-Truth | sequence01_gt.txt |
MD5 checksum (Rosbag) | 313c38109f9981b0c48e53e39be25b98 |
MD5 checksum (Raw Data) | 667dbab7158540a403a0edc2c4aef5c3 |
Sequence 02 | |
---|---|
Rosbag | sequence02.bag.00 sequence02.bag.01 |
Raw data | sequence02.tar.gz.00 sequence02.tar.gz.01 |
Calibration | calibration02.yaml |
Ground-Truth | sequence02_gt.txt |
MD5 checksum (Rosbag) | 753d9eb435a7fd6b8e40fad68672cac2 |
MD5 checksum (Raw Data) | c01d280723471530ebede1763b04c0ea |
Sequence 03 | |
---|---|
Rosbag | sequence03.bag |
Raw data | sequence03.tar.gz] |
Calibration | calibration03.yaml |
Ground-Truth | sequence03_gt.txt |
MD5 checksum (Rosbag) | b5659a491932910617a96b88405074a3 |
MD5 checksum (Raw Data) | 25c53f826cc1db165965db03daff53d4 |
Sequence 04 | |
---|---|
Rosbag | sequence04.bag |
Raw data | sequence04.tar.gz |
Calibration | calibration04.yaml |
Ground-Truth | sequence04_gt.txt |
MD5 checksum (Rosbag) | 887ad3b3173356c03ab02ae9ad27cc8d |
MD5 checksum (Raw Data) | e9a9d6fbcad3fe77785454058fe6bb65 |
Sequence 05 | |
---|---|
Rosbag | sequence05.bag.00 sequence05.bag.01 |
Raw data | sequence05.tar.gz.00 sequence05.tar.gz.01 |
Calibration | calibration05.yaml |
Ground-Truth | sequence05_gt.txt |
MD5 checksum (Rosbag) | a4e61b22c9ac0b818ceff9e23ea6d076 |
MD5 checksum (Raw Data) | df7c6201762916d56520c17299eb03c0 |
Sequence 06
^ ^ Sequence 06 ^ ^ Rosbag | [[1]] [[2]] [[3]]| ^ Raw data | [[4]] [[5]] [[6]] [[7]] | ^ Calibration | [[8]] | ^ Ground-Truth | [[9]] | ^ MD5 checksum (Rosbag) | e149bd1bec465c446d1d1c050fc003b4 | ^ MD5 checksum (Raw Data) | 6c70ceacf717568947c92b592a037115 | Dataset join and decompressSome sequences were compressed and split in order to facilitate their download. To join the different parts the following command should be used:
Raw data formatThe raw data format is detailed in [[10]]. Dataset parsersA simple dataset parser is available here: [[11]]. To create a rosbag from the raw data use:
Dataset samples.jpg?direct&600
Figure 2: GPS-RTK trajectory for each sequence. Platform and SensorsThe weed robot was used for the dataset collection (see Figure 3). The weed removing robot was supported by the //Development of a weed remotion mobile robot// project at CIFASIS (CONICET-UNR). The sensors coordinate systems and the relations among them are depicted too. All the sensors are synchronised by software. Robot sensors coordinate systems.png?direct&400Robot TF coordinate systems.png?direct&450 Figure 3: Sensors coordinate systems. Ground-Truth and EvaluationWe provide a 3D position ground-truth computed from the GPS-RTK system (no orientation is provided). The GPS-RTK system is composed by two [Reach] modules (one module is mounted on the rover and the other one mounted on the base station). We assessed the accuracy and performance of the GPS-RTK system in Fullpaper 3 articulocientifico jar 2017.pdf (spanish). As there is no magnetometer mounted on the robot, it is not possible to know precisely the robot orientation in GPS UTM coordinate frame. To mitigate this issue, we propose to use the [[12]] library for SLAM algorithms evaluation. In particular, the following command should be used to compute the Absolute Pose Error (APE):
ChangelogThe dataset changes are depicted in [[13]]. LicenseAll data in the Rosario Dataset is licensed under a [Commons 4.0 Attribution License (CC BY 4.0)] and the accompanying source code is licensed under a [License]. ~~QUICKSTATS:pages;;-1~~ |
---|